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ABSTRACT

High-entropy ceramics (HECs) have quickly gained attention since 2015. To

date, nearly all work has focused on five-component, equimolar compositions.

This perspective article briefly reviews different families of HECs and selected

properties. Following a couple of our most recent studies, we propose a step

forward to expand HECs to compositionally complex ceramics (CCCs) to

include medium-entropy and non-equimolar compositions. Using defective

fluorite and ordered pyrochlore oxides as two primary examples, we further

consider the complexities of aliovalent cations and anion vacancies as well as

ordered structures with two cation sublattices. Better thermally insulating yet

stiff CCCs have been found in non-equimolar compositions with optimal

amounts of oxygen vacancies and in ordered pyrochlores with substantial size

disorder. It is demonstrated that medium-entropy ceramics can prevail over

their high-entropy counterparts. The diversifying classes of CCCs provide even

more possibilities than HECs to tailor the composition, defects, disorder/order,

and, consequently, various properties.

Introduction

High-entropy ceramics (HECs), while still in their

nascent beginning, are developing as the ceramic

counterparts to the more mature high-entropy alloys

(HEAs) [1–4]. Despite some earlier related reports,

the field of HEAs emerged in 2004 with the seminal

publications of Yeh et al. [5] and Cantor et al. [6]

demonstrating the feasibility of alloying five or more

elements at equimolar fractions. Albeit some earlier

studies on nitride and other thin films [5, 7–10], the

HECs have simulated considerable interests in the

ceramics community since the report of a bulk

entropy-stabilized oxide (ESO) (Co0.2Cu0.2Mg0.2Ni0.2-
Zn0.2)O by Rost et al. in 2015 [11]. Since then, work

has grown exponentially with numerous efforts of

synthesizing different families of HECs (Fig. 1) and

exploring their properties. Zhang and Reece [1] have

recently reviewed the design, synthesis, structure,

and properties of HECs. After the initial submission

Address correspondence to E-mail: jluo@alum.mit.edu

https://doi.org/10.1007/s10853-020-04583-w

J Mater Sci (2020) 55:9812–9827

Review

Author's personal copy

http://orcid.org/0000-0002-5424-0216
http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-020-04583-w&amp;domain=pdf


of this article, Oses et al. [12] also published a review

of HECs. Thus, this article will not repeat a compre-

hensive review to avoid redundancy; instead, our

focus is on discussing a new perspective that

emerged by assembling and synthesizing new ideas

from the discoveries made in a couple of very recent

research reports [13, 14], as discussed below.

Early work on HEAs began as equimolar compo-

sitions [3]. More recently, studies on HEAs have

reported the benefits of medium-entropy and non-

equimolar compositions in improving mechanical

properties [15–17]. The development of HECs is

experiencing a similar pathway as most studies to

date have been focused on five-component (and

occasionally four-component) equimolar composi-

tions. In 2020, Wright et al. first proposed to expand

HECs to compositionally complex ceramics (CCCs) to

include medium-entropy and/or non-equimolar

compositions [13, 14]. In one example of yttria-

stabilized zirconia (YSZ)-like defective fluorite oxi-

des, non-equimolar medium-entropy compositions

were found to exhibit further reduced thermal con-

ductivity in comparison with their high-entropy

equimolar counterparts, presumably due to the

effects of oxygen vacancies clustering [13]. In another

case, the reduced thermal conductivity of ordered

pyrochlores was found to be correlated better with

size disorder, instead of ideal mixing entropy itself;

thus, medium-entropy compositions can again out-

perform their high-entropy counterparts [14].

In this short perspective article, we first briefly

review and discuss the recent discoveries of different

families of HECs. Subsequently, an in-depth analysis

of thermally insulative yet hard and stiff HECs/

CCCs is given as an example to highlight the new

opportunities. Following our two recent reports

[13, 14], a particular goal is to elaborate further the

proposal of broadening HECs to CCCs as a step

Figure 1 Schematic illustration of selected high-entropy ceramics

(HECs) fabricated and reported in recent literature. From the well-

known metallic high-entropy alloys (HEAs) to the newly reported

high-entropy aluminides [43], silicides [44, 45], borides [46–56],

carbides (not shown here) [21, 22, 57–66], and oxides

[11, 13, 14, 23–37, 68–95]; the bonding character changes from

metallic to mixed (metallic/covalent/ionic) and then to mostly

ionic. Here, the discovery of single-phase, equimolar, high-entropy

intermetallic compounds such as (Fe1/5Co1/5Ni1/5Mn1/5Cu1/5)Al

[43], which are structurally like HECs (with high-entropy mixing

on one of two sublattices) but with mostly metallic (and some

ionic) bonding, bridges the HEAs and HECs. Moreover, the

fabrication of YSZ-like compositionally complex fluorite oxides

with substantial amounts of aliovalent cations and oxygen

vacancies, as well as ordered compositionally complex

pyrochlore oxides and high-entropy perovskite oxides with two

cationic sublattices, further broadens the diversifying families of

HECs and CCCs.
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forward. We also discuss the diversifying classes of

CCCs that provide even more possibilities than HECs

to tailor the composition, defects, disorder, and order

to achieve better and more tunable properties.

Terminologies and classifications: a step
forward from HECs to CCCs

Several definitions of metallic HEAs have been

summarized and discussed by Miracle and Senkov

[3]. Similar to their metallic counterparts, we may

(loosely) define high-entropy ceramics or HECs as

compositions of five or more principal (* 5–35%)

cations (often in equimolar or near-equimolar frac-

tions), with ideal mixing entropy of greater than 1:5kB
per cation (on at least one cation sublattice if there are

two or more cation sublattices), where kB is the

Boltzmann constant.

A phase is considered to be ‘‘entropy-stabilized’’

when the entropy contributions overcome an

enthalpic barrier, as demonstrated by Rost et al. [11].

Correspondingly, a class of entropy-stabilized

ceramics (ESCs, with the ESOs as a subclass [11]) can

be defined. We should note that the concept of ‘‘en-

tropy-stabilized phase’’ and ESCs can be applied to

cases beyond the high-entropy compositions. Dis-

cussion of ESCs is not the focus of this perspective

article.

In a most recent study of fluorite oxides, Wright

et al. first proposed to extend HECs to composition-

ally complex ceramics or CCCs to include medium-

entropy and non-equimolar compositions (Fig. 2)

[13]. This is similar to the terminologies of composi-

tionally complex or complex-concentrated alloys

(CCAs) used in the physical metallurgy community.

CCCs may alternatively be named as ‘‘multi-principal

cation ceramics (MPCCs),’’ analogous to their metallic

counterpart, multi-principal element alloys (MPEAs).

Here, CCCs include medium-entropy ceramics

(MECs) that typically have mixing configurational

entropy in the range of 1� 1:5kB per cation (on at

least one cation sublattice if there are multiple cation

sublattices), with similar definitions used for their

metallic counterparts [18–22]. MECs with one cation

sublattice include (i) 3-4 cation equimolar (or near-

equimolar) compositions, e.g., (Hf1/4Zr1/4Ce1/4Y1/

4)O2-d [23] and (Ta1/3Zr1/3Nb1/3)C [22], and (ii) non-

equimolar compositions with 3-4 principal plus a few

minor (typically\ 5%) cations, e.g.,

(Hf0.314Zr0.314Ce0.314Y0.029Ca0.029)O2-d [13] (Fig. 2).

Also, ordered MECs with two sublattices include

Gd2(Sn1/4Ti1/4Hf1/4Zr1/4)2O7 and (Sm1/2Gd1/2)2(Ti1/

3Hf1/3Zr1/3)2O7 [14].

We should note that we use ‘‘ideal’’ mixing entropy

here to define high- versus medium-entropy com-

positions, as some chemical (cation) short-range

orders (CSROs) likely exist and reduce the actual

mixing (configurational) entropy.

Additional complexity arises for CCCs with two

(or more) cation sublattices, e.g., perovskite (ABO3)

[24–28], spinel (AB2O4) [29–32], and pyrochlore

(A2B2O7) [33–37] oxides. Here, we typically distin-

guish HECs and MECs based on high- or medium-

entropy mixing on one of the cation sublattices

(typically according to the one with the highest ideal

mixing entropy). For HECs with two cation sublat-

tices, high-entropy mixing can occur at one cation

sublattice, e.g., in (La1/5Ce1/5Nd1/5Sm1/5Eu1/

5)2Zr2O7 [14, 34] and (Ba1/2Sr1/5)(Zr1/5Sn1/5Ti1/5Hf1/

5Nb1/5)O3 [26], or on both cationic sublattices, e.g., in

(Gd1/5La1/5Nd1/5Sm1/5Y1/5)(Co1/5Cr1/5Fe1/5Mn1/

5Ni1/5)O3 [25] (Fig. 2).

A further somewhat vague case is represented in

CCCs with medium-entropy mixing at two cation

sublattices, e.g., in (Sm1/4Eu1/4Gd1/4Yb1/4)2(Ti1/4Sn1/

4Hf1/4Zr1/4)2O7 and (Sm1/3Eu1/3Gd1/3)2(Ti1/2Sn1/

6Hf1/6Zr1/6)2O7 [14], so that they can have an overall

mixing entropy higher than some of those having

high-entropy mixing on only one of two cation sub-

lattices but low mixing entropy on the other cation

sublattice; yet these CCCs still have\1:5kB per cation

on average (or on any cation sublattice). Thus, they

may be classified as HECs or MECs (somewhat

subjectively).

We should note the boundaries of and between

HECs, MECs, and CCCs are rather vague (not rig-

orously defined), and definitions are mostly

subjective.

Further extensions include mixing-anion CCCs

[38–42] and possibly covalent (and, very often,

mixed-bonding) CCCs.

Overview of HECs

Systems

Recently, Zhang and Reece comprehensively

reviewed the HEC systems and synthesis methods
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[1]. Here, we briefly discuss selected essential pro-

gress. Figure 1 illustrates selected high-entropy

materials with different bonding nature and crystal

structures, from metallic HEAs, which are mostly in

simple BCC and FCC, and some HCP structures [3],

and high-entropy aluminides with mostly metallic

(but some ionic) bonding and ordered two sublattices

[43], to mixed (metallic/covalent/ionic) bonding in

high-entropy silicides [44, 45] and borides [46–56] (as

well as carbides [21, 22, 57–66] and nitrides [67] not

shown here), to ionic high-entropy oxides

[11, 13, 14, 23–37, 68–96].

Within the high-entropy oxides, most initial atten-

tion [68–74, 77–81, 83, 85, 86, 88–93, 95] has focused

on the rocksalt ESO (Mg1/5Ni1/5Co1/5Cu1/5Zn1/5)O

first reported by Rost et al. [11]. Other oxide systems

of significant interests include those with the fluorite

[13, 23, 75, 76, 84], spinel [29–32, 96], pyrochlore

[14, 33–37], and perovskite [24–28] structures.

Pyrochlore and perovskite oxides are unique

because medium- or high-entropy mixing can be

achieved on multiple cation sites (Fig. 1)

[14, 24–28, 33–37]. Additionally, both fluorite/py-

rochlore and rocksalt/spinel oxides can undergo

order–disorder transformations, which have not yet

been explored for medium- and high-entropy com-

positions; nevertheless, it offers potentially a new

avenue to further engineer CCCs.

In 2016, Gild et al. [48] first reported the fabrication

of high-entropy borides (metal diborides of the AlB2

structure) as a new class of high-entropy ultra-high-

temperature ceramics (UHTCs). These high-entropy

borides are interesting because they have mixed

covalent, metallic, and ionic bonds, with a unit-lay-

ered hexagonal crystal structure consisting of a 2D

high-entropy mixing of metal/cation atoms sepa-

rated by rigid covalently bonded boron nets (Fig. 1).

Although the initial work on high-entropy borides

resulted in relatively low densities (* 92%) due to

significant oxide contamination from high-entropy

ball milling, several subsequent studies quickly

improved powder synthesis and fabrication methods

Figure 2 We propose to extend high-entropy ceramics (HECs) to

compositionally complex ceramics (CCCs), also known as ‘‘multi-

principal cation ceramics (MPCCs)’’ [13], to include medium-

entropy ceramics (MECs) with typical mixing configurational

entropy in the range of 1� 1:5kB per cation. Here, HECs are

loosely defined as compositions of five or more principal (typically

5–35%) cations in equimolar or near-equimolar fractions, with

typically [ 1:5kB per cation ideal mixing configurational entropy.

MECs include (1) 3-4 cation, equimolar (or near-equimolar)

compositions and (2) non-equimolar compositions with 3-4

principal plus a few minor (typically\ 5%) cations. For crystal

structures with two or more cation sublattices (e.g., perovskite and

pyrochlore), HECs refer to compositions with high-entropy mixing

in either one or more cation sublattice(s). Here, ceramic

compositions with medium-entropy mixing on two (or more)

cation sublattices may be loosely considered as an extension to

HECs. Further extensions include mixing-anion CCCs and

covalent (or mixed-bonding) CCCs. Finally, entropy-stabilized

ceramics (ESCs) were defined separately [11], which can overlap

with the definitions of CCCs, HECs, and MECs above.
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Author's personal copy



that enhanced relative densities and properties

[46, 47, 49–56]. In 2018 and 2019, several groups

[21, 22, 57–66] also independently reported the fab-

rications of high-entropy carbides as another subclass

of high-entropy UHTCs. High-entropy boride–car-

bide two-phase UHTCs have also been fabricated and

examined recently [97]. However, the bulk mechani-

cal properties such as flexural strength and fracture

toughness (other than indentation toughness) need to

be tested to further develop and enable these high-

entropy UHTCs for applications in extreme

environments.

In addition to two major classes of high-entropy

UHTCs (discussed above) that have been extensively

studied in the last a few years, high-entropy nitrides

[67], silicides [44, 45], sulfides [98], fluorides [99],

aluminides [43], hexaborides [100], carbonitrides

[101], and alumino-silicides [38] have been fabricated.

In the broader families of oxide-related HECs, the

fabrication of high-entropy magnetoplumbites

[87, 102], zeolitic imidazolate frameworks [103], fer-

rites [104], phosphates [18, 105], monosilicates

[19, 20], disilicates [106], and metal oxide nanotube

arrays [107] have been reported. Medium- and high-

entropy compositionally complex thermoelectrics

have also been explored [40–42]. Most of these stud-

ies found homogeneously distributed cations

demonstrating the formations of high-entropy solid

solutions.

Modeling

Modeling is critical to help further the understanding

of HECs. Notably, Sarker et al. established a

descriptor to help predict single-phase formation in

high-entropy carbides from density-functional theory

calculations [59, 66]. Efforts are being made to extend

and validate the descriptor for a broad range of other

material systems. Additionally, modeling has

revealed the importance of size and interatomic force

constant disorder resulting in thermally insulative

HECs [78, 108–110]. Various other modeling studies

have been conducted [60, 111–115]. A complete

review and critical assessment of the modeling of

HECs is beyond the scope of this perspective article.

In a review published after the initial submission of

this article, Oses et al. [12] provided a brief summary

of modeling studies (along with other aspects of

HECs).

Properties

Among the oxides, some interesting and intriguing

functional properties discovered so far include high

dielectric constants [70] and lithium-ion conductivity

[69, 83, 93, 116], low-temperature water splitting [82],

stable, high-temperature catalytic properties [79],

pressure-induced amorphization [117], and tunable

magnetism [28, 31, 32, 85, 88]. The properties of HECs

have been reviewed previously [1, 2, 12, 116].

The high-entropy borides and carbides are being

examined for their potential use as next-generation

UHTCs [118, 119]. These classes of materials have

also shown increased mechanical properties

[56, 61, 62, 64, 66] and oxidation resistance

[48, 63, 120, 121] compared to their constituents or a

rule of mixtures (RoM) analysis.

Notably, a general property of HECs is represented

by the increased hardness in comparison with the

RoM averages, which have been reported for high-

entropy borides [48, 50, 54, 56], carbides

[59, 61, 63, 66], and silicides [44, 45]. Further discus-

sion can be found in the next section. Without a

surprise, HECs also generally exhibit reduced ther-

mal conductivity due to the increased phonon scat-

tering, which will be discussed in more detail in the

next section.

Another possible general property of HECs and

CCCs is the increased phase stability for the high-

symmetry phase. Specifically, the phase transforma-

tion temperature from a high-symmetry, high-T (en-

tropy-stabilized) phase to a low-symmetry, low-T

(enthalpy-stabilized) phase may be reduced. In other

words, the high-T, high-symmetry phase may be

stabilized to lower temperatures (for a large tem-

perature region) in HECs/CCCs in comparison with

their low-entropy counterparts. Two recent examples

are given below. For example, Liu et al. found the

monoclinic Cu2(S/Se/Te) system transformed into a

hexagonal structure at room temperature when the

configurational entropy was greater than * 0:5R per

mol. [40]. A similar effect has also been reported by

Wright et al. in YSZ-like compositionally complex

fluorite oxides [13]. While 3YSZ, (Zr0.942Y0.058)O2-d,

undergoes a tetragonal to cubic transition around

2200 �C, its high-entropy counterpart (Hf0.314Ce0.314-
Zr0.314Y0.029Yb0.029)O2-d, which has an identical con-

centration of cubic stabilizers, experienced this

transition around 1400 �C, representing a remarkable

reduction of the phase transformation temperature

9816 J Mater Sci (2020) 55:9812–9827
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of * 800 �C (i.e., an increase in the stability region of

the high-T cubic phase) [13].

An example of new opportunities:
thermally insulating yet stiff CCCs

Persistent in a broad range of HECs are enhanced

mechanical properties [20, 22, 44, 48, 50, 54, 56, 59,

61–64, 66, 78] and diminished thermal conductivity

[20, 23, 33, 34, 36, 40–42, 44, 54, 65, 78, 84, 98, 105, 122],

in particular, with respect to their RoM averages. This

enables HECs to possess a new unique property since

Young’s modulus and thermal conductivity are typ-

ically inversely correlated, as shown in Fig. 3 (re-

plotted after Braun et al. [78]). In Fig. 3, we have

further added our data points for three composi-

tionally complex fluorite-based oxides: (1) ‘‘YSZ-like’’

non-equimolar Hf0.284Zr0.284Ce0.284Y0.074Yb0.074O2-d

[13] and (2) (YDyErNb1/2Ta1/2)O7 rare earth nio-

bate/tantalate [Wright, Wang, Chen, and Luo,

unpublished results], both of which are in the disor-

dered fluorite structure, as well as (3) (Sm1/4Eu1/

4Gd1/4Yb1/4)2(Ti1/2Hf1/4Zr1/4)2O7 in the ordered

pyrochlore structure [14], in addition to rocksalt ESOs

reported by Braun et al. [78]. Figure 3 suggests the

possibilities to achieve high E/k ratios in HECs/

CCCs. Yet, we note that highest E/k ratio reported to

date is for Dy3NbO7 [123] (also labeled in Fig. 3),

which is in the disordered fluorite structure (with

random mixing of Dy3? and Nb5? in 3:1 ratios in one

cation sublattice) with relative low mixing entropy

of * 0.56kB but large size disorder of * 13.5% (de-

fined in [14]; see further discussion below). This

unique trait makes HECs attractive for applications

such as thermal barrier coatings (TBCs) [124] and

thermoelectrics [125].

In this section, we illustrate and discuss the new

and unique opportunities brought by HECs and

CCCs, as well as the potential benefits of broadening

HECs to CCCs as we proposed, using thermally

insulting yet stiff CCCs as an example.

Thermal conductivity

While most experimental HEC studies have reported

lowered thermal conductivity, only a couple of

reports have investigated this phenomenon in depth

[13, 78]. Braun et al. used a virtual crystal approxi-

mation model to investigate the thermal conduction

mechanism in the rocksalt-structured ESO, and they

showed that * 50% reduction in thermal conduc-

tivity could be achieved when adding another cation

in the ESO derivatives [78]. The authors ruled out

mass and size disorder (by using nearby elements in

the periodic table) and anharmonicity (via adopting

components with similar thermal expansion coeffi-

cients as MgO). Consequently, they attributed the

temperature-independent (amorphous or glass-like)

thermal conductivity to disorder in the interatomic

force constants (IFCs). This claim was further sup-

ported by an extended X-ray absorption fine struc-

ture analysis, which revealed a highly strained anion

sublattice that presumably led to the suppressed

thermal conductivity.

A couple of very recent research reports [13, 14]

suggest broadening HECs to CCCs to achieve even

lower thermal conductivity in MECs that can out-

perform their high-entropy counterparts.

On the one hand, the ideal mixing (configurational)

entropy is not the best descriptor to describe thermal

Figure 3 Thermal conductivity (k) versus Young’s modulus

(E) in a double logarithmical plot to feature several HECs/CCCs

with high E/k ratio. The open square denotes a metallic HEA,

AlCoCrFeNi, which exhibits a high E/k ratio in comparison with

pure metals. The black squares, blue triangles, and red disks

denote metallic, nonmetallic, and rocksalt ESO systems,

respectively. Replotted after Ref. [78] with permission

(Copyright 2020, John Wiley and Sons), where we further

added the data points for Dy3NbO7 (denoted by the purple star)

[123] and three compositionally complex fluorite-based oxides

(denoted by green pentagons): non-equimolar

Hf0.284Zr0.284Ce0.284Y0.074Yb0.074O2-d [13] and (YDyErNb1/2Ta1/

2)O7 rare earth niobate/tantalate [our unpublished data] in the

disordered fluorite structure, as well as (Sm1/4Eu1/4Gd1/4Yb1/

4)2(Ti1/2Hf1/4Zr1/4)2O7 in the ordered pyrochlore structure [14].
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conductivity. For example, size disorder (see defini-

tion in Ref. [14]) has been proposed to be a more

effective descriptor (than ideal mixing entropy itself)

in describing thermal conductivity in medium- and

high-entropy pyrochlore oxides (Fig. 4a, b) [14].

Theoretical work by Schelling et al. on simple cubic

pyrochlore oxides has also suggested that the low

conductivity is governed by size disorder [126]. The

significant role of size disorder suggests an important

role of severe lattice deformation in reducing thermal

conductivity in HECs and CCCs. It also suggests that

the lower thermal conductivities are not always

coincident with high-entropy compositions, which

was also confirmed experimentally in pyrochlore

oxides, as shown in Fig. 4a [14]. The fact that Dy3
NbO7, which has low ideal mixing entropy

of * 0.56kB per cation but large size disorder of

dsize & 13.5%, exhibits the highest E/k ratio reported

to date [123] further supports this suggestion.

On the other hand, while the equimolar condition

does provide the highest configurational entropy

assuming ideal mixing, other variables such as oxy-

gen vacancy concentration and cation valency may

also be significant. This point is highlighted by

Wright et al. in a study on non-equimolar fluorite

oxides [13]. The authors found that the thermal con-

ductivity of their YSZ-like fluorite oxides to be

dependent on the nominal oxygen vacancy

Figure 4 a The measured thermal conductivities (represented by

color and size) of 22 single-phase pyrochlore oxides, plotted in the

2D space of ideal mixing configurational entropy in the A and B

sublattices, respectively, using the data in Ref. [14]. Correlation of

b thermal conductivity (k) and c the E=k ratios of these 22

pyrochlores with the size disorder parameter, d�size. It was,

therefore, suggested that the size disorder parameter d�size (instead
of the ideal mixing entropy itself) can be used as a more effective

descriptor to forecast k and the E=k ratio in CCCs. Panel (b) and

(c) reprinted from Ref. [14] with permission (Copyright 2020,

Elsevier).
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concentration Vö½ �, e.g., in a series of (Hf1/3Zr1/3Ce1/

3)1-x(Y1/2Yb1/2)xO2-d specimens shown in Fig. 5 [13].

More than approximately 5% of oxygen vacancies in

the anion sublattice would likely lead to clustering

and potentially ordering of the oxygen vacancies that

suppress the point defect scattering, similar to that is

well known for YSZ [127–129].

The combination of these studies [13, 14] demon-

strates that various medium-entropy compositions

(Fig. 1) can outperform their high-entropy counter-

parts, thereby supporting a step forward to broaden

HECs to CCCs. Moreover, the increased composi-

tional space in CCCs, which is significantly larger

than that in HECs, allows for further engineering and

design capabilities.

It is worth noting that Braun et al. [78] and Wright

et al. [14] suggested different vital parameters con-

trolling the thermal conductivity: disorders in char-

ge/force constants versus atomic/cation sizes. It is

unlikely that one simple descriptor can be used to

forecast the thermal conductivity in all HECs and

CCCs. Furthermore, these two parameters are likely

coupled. It should be noted that there has yet to be

direct experiments to probe the role of the force

constant variation in reducing thermal conductivity.

This will need to be probed by spectrophotometry,

vibrational spectroscopy, or electron spin resonance

spectroscopy; however, the band overlap may occur

for chemically similar elements, rendering such

analysis difficult [130–133]. Further in-depth mecha-

nistic studies are needed.

Mechanical properties

Another interesting general observation of HECs is

represented by their enhanced mechanical properties.

The generally observed enhanced hardness from the

RoM averages [44, 48, 50, 54, 56, 59, 61, 63, 64, 66] may

be explained through solid-solution strengthening.

Castle et al. also highlighted the importance of the

activated slip systems affecting hardness and the

relative easiness of activation and switching of

dominant slip systems [61]. Additionally, the increase

in chemical disorder may change the dominant slip,

thereby resulting in variation in ductility and hard-

ness [64]. The importance of mass and size disorder

Figure 5 Measured Young’s modulus (E), thermal conductivity

(k), and E/k ratio for a series of (Hf1/3Zr1/3Ce1/3)1-x(Y1/2Yb1/

2)xO2-d specimens, where x is the total stabilizer fraction.

Medium-entropy, non-equimolar specimen

Hf0.284Zr0.284Ce0.284Y0.074Yb0.074O2-d exhibits the lowest

thermal conductivity and the highest E=k ratio. Replotted with

revisions from Ref. [13] with permission (Copyright 2020,

Elsevier).
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acting as an impedance and scattering the disloca-

tion’s group energy was suggested by Sarker et al. for

high-entropy carbides [66].

Harrington et al. further noted that traditional

solid-solution strengthening is likely significant; yet,

the overall electronic band structure is equally (or

potentially more) important [59]. The electronic

structure arises from the bonding nature, and it has a

significant impact on the available slip systems and

direction in the material. Thus, the comparison of

hardness between an HEC and the RoM of con-

stituents is usually null. The improved mechanical

properties may be due to solid-solution strengthen-

ing or perhaps unique available slip systems only

accessible through increased configurational entropy.

Models accounting for the solid-solution strengthen-

ing, electronic band structure, and Hall–Petch effects

are warranted to explain observations further.

The hardness is typically directly related to

Young’s modulus (E). Interestingly, the modulus of

HECs was also found to be enhanced in some cases

[13, 20, 59, 61, 64, 66, 78]. The underlying mechanisms

are unknown.

In defective compositionally complex fluorite oxi-

des, the moduli and hardness values are comparable

with YSZ despite the addition of high fractions of soft

stabilizers [13]. Figure 5 shows that the modulus of

(Hf1/3Zr1/3Ce1/3)1-x(Y1/2Yb1/2)xO2-d specimens is

roughly the same for equimolar compositions and

8YSZ-like Hf0.284Zr0.284Ce0.284Y0.074Yb0.074O2-d. How-

ever, the modulus drops substantially with further

reduction in the amounts of stabilizers (presumably

due to the instability of the cubic phase).

In high-entropy metal diborides, a recent study

showed that incorporating softer WB2 and MoB2

components makes single-phase high-entropy bor-

ides harder, which suggested unusual and unex-

pected phenomena can occur in HECs [134].

E/k ratios

Braun et al. used Young’s modulus (E)-to-thermal

conductivity (k) ratio, E=k, as a parameter to estimate

the phonon scattering rate since E=k / 1=Cvs, where

Cv and s are the volumetric heat capacity and phonon

lifetime, respectively [78]. This parameter can serve

as a figure of merit for the suppressed thermal con-

ductivity and enhanced phonon scattering in HECs

and CCCs. There exists a strong trade-off between

thermal conductivity and Young’s modulus because

both should increase with strong atomic bonding;

however, HECs have been shown to have a unique

capability to break this trade-off with a record E=k of

143:7GPa m K W�1 in 2018 [78]. Later, Yang et al.

broke this record with a disordered fluorite oxide,

Dy3NbO7 with relatively low entropy, � 0:56kB per

cation, but high size disorder of dsize& 13.5% (see the

definition in Ref. [14]) that exhibits the highest E=k of

235GPa m K W�1 [123] reported to date.

Notably, Wright et al. found that high E=k ratios can

be achieved in MECs (i) in non-equimolar defective

fluorite oxides with an optimal amount of oxygen

vacancies (Fig. 5) [13] and (ii) in ordered pyrochlore

oxides with considerable size disorder (Fig. 4c) [14],

both of which outperformed their high-entropy

counterparts. High E=k ratios achieved by several

representative HECs and CCCs are shown in Fig. 3.

Concluding remarks

Suppressed thermal conductivity and enhanced

mechanical properties are likely inherent to HECs

and CCCs. The E=k ratios can serve as a useful fig-

ure of merit to guide the design of thermally insu-

lating, yet stiff ceramics for potential applications as

new classes of TBCs (albeit that other properties such

as the matching thermal expansion coefficients also

needs to be considered). The classic trade-off in

materials selections between the low thermal con-

ductivity and high modulus and hardness can be

broken via exploring HECs and CCCs, thereby sug-

gesting exciting new opportunities. Further in-depth

studies are needed to understand the underlying

mechanisms and develop useful descriptors.

Until recently, nearly all the attention in HEC

research has been placed on five-component (and, in

a few cases, four-component) equimolar composi-

tions. Here, we propose a step forward to expand

HECs to CCCs (i.e., compositionally complex

ceramics) to include medium-entropy and non-

equimolar compositions. This proposal is inspired

and supported by a couple of our most recent

experimental studies showing that non-equimolar

defective fluorite oxides with an optimal amount of

oxygen vacancies (Fig. 5) [13] and medium-entropy

pyrochlore oxides with considerable size disorder

(Fig. 4c) [14] can both outperform their high-entropy

counterparts.
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Possible benefits that arise from the broadening of

HECs to CCCs, as well as considering more complex

CCCs with two or more cation sublattices and pos-

sibly anion-site mixing, are represented by the much

increased compositional space (order of magnitude

higher than the already vast compositional space of

equimolar HECs) and the more degrees of freedom to

tune properties, particularly multiple properties at

the same time. Additional revenue of tailoring the

defects and disorder is represented by introducing

aliovalent cations and associated anion vacancies,

e.g., in YSZ-like defective fluorite oxides (Fig. 2), and

local order (CSROs), long-range disorder-order (e.g.,

fluorite-pyrochlore) transformation, and heterogene-

ity (e.g., nanodomains). The development of CCCs is

also likely to reveal fascinating and improved prop-

erties in many other relevant areas such as catalysts,

electrochemical performance, or corrosion resistance.

In such a case, let us ‘‘embrace the complexity’’ to

achieve superior and tunable properties.

In this proactive pursuit of ‘‘embracing the com-

plexity,’’ the diversifying classes of CCCs illustrated

in Fig. 2 provide orders of magnitudes more possi-

bilities than equimolar HECs to tailor the composi-

tion, defects, disorder, and short- and long-range

order to achieve better and more tunable perfor-

mance properties. However, the vast compositional

space also poses a major challenge in designing

HECs, which is even more challenging for CCCs. In

this regard, in-depth studies of the underlying

mechanisms and development of various descriptors

and strategies to predict useful trends are warranted

and essential.

We conclude by stating that a significant amount of

progress in HEC research that has been obtained and

the nearly exponential growth since 2015 are stag-

gering. Ceramics have a niche use in the world, but

their properties are duly unique, and their demands

for improvements are ubiquitous. While HECs are

still in their infancy, the broadened compositional

space to CCCs will enable the continuing the research

to be limitless. Again, let us ‘‘embrace the

complexity!’’
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